Builtin
var nil Type // Type must be a pointer, channel, func, interface, map, or slice type
// As a special case, it is legal to append a string to a byte slice, like this:
// slice = append([]byte("hello "), "world"...)
// The len built-in function returns the length of v, according to its type:
// Array: the number of elements in v.
// Pointer to array: the number of elements in *v (even if v is nil).
// Slice, or map: the number of elements in v; if v is nil, len(v) is zero.
// String: the number of bytes in v.
// Channel: the number of elements queued (unread) in the channel buffer;
// if v is nil, len(v) is zero.
// For some arguments, such as a string literal or a simple array expression, the
// result can be a constant. See the Go language specification's "Length and
// capacity" section for details.
func len(v Type) int
// The cap built-in function returns the capacity of v, according to its type:
// Array: the number of elements in v (same as len(v)).
// Pointer to array: the number of elements in *v (same as len(v)).
// Slice: the maximum length the slice can reach when resliced;
// if v is nil, cap(v) is zero.
// Channel: the channel buffer capacity, in units of elements;
// if v is nil, cap(v) is zero.
// For some arguments, such as a simple array expression, the result can be a
// constant. See the Go language specification's "Length and capacity" section for
// details.
func cap(v Type) int
// The make built-in function allocates and initializes an object of type
// slice, map, or chan (only). Like new, the first argument is a type, not a
// value. Unlike new, make's return type is the same as the type of its
// argument, not a pointer to it. The specification of the result depends on
// the type:
// Slice: The size specifies the length. The capacity of the slice is
// equal to its length. A second integer argument may be provided to
// specify a different capacity; it must be no smaller than the
// length. For example, make([]int, 0, 10) allocates an underlying array
// of size 10 and returns a slice of length 0 and capacity 10 that is
// backed by this underlying array.
// Map: An empty map is allocated with enough space to hold the
// specified number of elements. The size may be omitted, in which case
// a small starting size is allocated.
// Channel: The channel's buffer is initialized with the specified
// buffer capacity. If zero, or the size is omitted, the channel is
// unbuffered.
func make(t Type, size ...IntegerType) Type
// The new built-in function allocates memory. The first argument is a type,
// not a value, and the value returned is a pointer to a newly
// allocated zero value of that type.
func new(Type) *Type
// The close built-in function closes a channel, which must be either
// bidirectional or send-only. It should be executed only by the sender,
// never the receiver, and has the effect of shutting down the channel after
// the last sent value is received. After the last value has been received
// from a closed channel c, any receive from c will succeed without
// blocking, returning the zero value for the channel element. The form
// x, ok := <-c
// will also set ok to false for a closed channel.
func close(c chan<- Type)
// The panic built-in function stops normal execution of the current
// goroutine. When a function F calls panic, normal execution of F stops
// immediately. Any functions whose execution was deferred by F are run in
// the usual way, and then F returns to its caller. To the caller G, the
// invocation of F then behaves like a call to panic, terminating G's
// execution and running any deferred functions. This continues until all
// functions in the executing goroutine have stopped, in reverse order. At
// that point, the program is terminated with a non-zero exit code. This
// termination sequence is called panicking and can be controlled by the
// built-in function recover.
func panic(v interface{})
// The recover built-in function allows a program to manage behavior of a
// panicking goroutine. Executing a call to recover inside a deferred
// function (but not any function called by it) stops the panicking sequence
// by restoring normal execution and retrieves the error value passed to the
// call of panic. If recover is called outside the deferred function it will
// not stop a panicking sequence. In this case, or when the goroutine is not
// panicking, or if the argument supplied to panic was nil, recover returns
// nil. Thus the return value from recover reports whether the goroutine is
// panicking.
func recover() interface{}
Last updated
Was this helpful?